Polarisation measurements of clay, volcanic sand and snow: implications for the climate changes

Maria Gritsevich, Jouni Peltoniemi, and Teemu Hakala

Soot on Snow (SoS) campaign

Soot on Snow (SoS) 2013 campaign with FMI

- Thickness of ash and other fragments that are thrown out by an exploding volcano determine effects that it has on the underlying snow
- The black cover absorbs extra sunlight (while if the layer is really thick the heat almost does not transmitted through to the snow)

Key questions to answer:

- How does the volcano dust affect climate changes, and in particular, light reflectance by snow?
- Study further effects on snow grains and their evolution with the time
- Melting rate of dusty snow

Key idea:

- Deposit soot of dust on a natural snow pack in a controlled way (known amount, certain area, no dust loss during deposition)
- Measure the snow albedo, BRDF, polarisation, and other snow properties preferably through the entire melting period

Key measurement components:

1. Snow

Primarily component for the experiment. Natural snow pack at Sodankylä airport. Begining of April, 2013

2. Volcanic sand

A near black mixture of the volcanic ash of glaciofluvial nature. Origin: under the Myrdalsjokull glacier

3. Glaciogenic silt

Collected from the glacial river Mulakvisl, it consists mainly of silt and some coarse clay sized particles

FIGIFIGO measurements

http://www.polarisation.eu/index.php/list-of-instruments/view-submission/172

Reflectance factor

- Radiance from the target divided by radiance from a white matte (Lambertian) surface
 - 0 for black surface
 - 1 for white diffuse surface (Lambertian)

Lambertian reflectance

- defines an ideal diffusely reflecting surface
- perfectly matte
- scatters same amount of light to all view direction
- is not affected by illumination direction
- Spectralon® is a fluoropolymer, which has the highest diffuse reflectance of any known material or coating over the ultraviolet, visible, and near-infrared regions of the spectrum

Bidirectional Reflectance Factor

- Anisotropy of reflectance is described with concept Bidirectional Reflectance Factor (BRF)
- Bidirectional geometry is defined by illumination and view directions
 - θ zenith angle
 - φ azimuth angle

How to measure BRF?

- Reflectance factor refers to certain illumination and view geometry
- Thus reflectance must be measured from multiple along with notes on illumination and view direction

FIGIFIGO

FGI's Field Goniospectrometer

Primary targets: Vegetation and snow

Extra Applications:
Planetary science
(e.g. meteorite
measurements and
their matches with
asteroids)

laser pointer & active optics

- Spectrometer optics have laser pointers to show the footprint position
- Sample elevation is entered and a servo controlled mirror adjusts the footprint according to tilt

The laboratory lighting setup

The light source and the off axis parabolic mirror are mounted in same frame to keep the geometry constant. A large flat mirror is placed on a heavy tripod, and is used to reflect the light to the sample

The laboratory lighting setup

Examples of analyzed measurements

Snow

Sooted snow

Snow with volcanic sand

Volcanic sand

Snow

Snow with glaciogenic silt

Glaciogenic silt

Conclusions

- Using FIGIFIGO we have conducted light scattering measurements of snow, volcanic sand, and glaciogenic silt, as well as their mixtures in different proportion
- Increase of the volcanic sand or glaciogenic silt concentration can be very logically seen through data reduction steps and on final graphs
- Negative polarisation has been detected in a number of cases
- Joint publications in preparation

THANK YOU

BRF retrieval accuracy

- The general accuracy of FIGIFIGO BRF measurement is between 1-5% for a well defined sample
- Accuracy depends especially on wavelength, sample reflectance factor, and solar zenith angle
 - Spectrometer noise causes error that is proportional to reflected radiance
 - Levelling of Spectralon panel

